Contrasting Effects of the Neuropeptides Substance P, Somatostatin, and Neuropeptide Y on the Methamphetamine-Induced Production of Striatal Nitric Oxide in Mice
Author(s): Lauriaselle Afanador, Haley Yarosh, Jing Wang, Syed F. Ali and Jesus A. Angulo
Abstract
Several laboratories have shown that metham- phetamine (METH) neurotoxicity is associated with increases of nitric oxide (NO) production in striatal tissue and blockade of NO production protects from METH. Because substance P modulates NO production, we tested the hypothesis that intrinsic striatal neuropeptides such as somatostatin and neuropeptide Y (NPY) modulate striatal NO production in the presence of METH. To that end, METH (30 mg/kg, IP) was injected into adult male mice alone or in combination with pharmacological agonists or antagonists of the neurokinin-1 (substance P), somatostatin or NPY receptors and 3-nitrotyrosine (an indirect index of NO production) was assessed utilizing HPLC or a histological method. Pre-treatment with the systemic neurokinin-1 receptor antagonist WIN-51,708 significantly attenuated the METH-induced production of striatal 3-NT measured at two hours post-METH. Conversely, intrastriatal injection of NPY1 or 2 receptor agonists inhibited the METH-induced production of striatal 3-NT. Similarly, intrastriatal infusion of the somatostatin receptor agonist octreotide attenuated the METH-induced striatal production of 3-NT. Taken together, our results suggest the hypothesis that the neuropeptide substance P is pro-damage while the neuropeptides somatostatin and NPY are anti-damage in the presence of METH by targeting the production of NO. (Supported by DA020142/NIDA.)
<