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Abstract

Image inpainting is a promising but challenging approach that fills in huge 
free-form empty areas in images. Most of the recent papers concentrate 
on splitting masked image into 2 matrices of valid and invalid elements 
which makes the system more complex. This paper proposes a novel 
algorithm named ReConv which uses a repeated standard convolution 
operation which treats valid and invalid elements of an image in the same 
manner. The outcomes of our suggested method, ReConv, shows that, in 
comparison to earlier approaches, our system produces outputs that are 
more adaptable with good quality for real world applications. In the context 
of drug and alcohol addiction treatment and research, this technology 
offers several unique and emerging applications like Therapeutic Visual 
Stimuli Modification. Inpainting techniques can fill in missing data in 
addiction-related images, such as damaged MRI scans or incomplete 
survey responses, enhancing the predictive capacity of machine learning 
models used in addiction research. An extensive comparison study on 2 
types of datasets validates our method. The effectiveness of the suggested 
strategy was evaluated using different measures such as PSNR, SSIM 
and FID. The results show that our recommended approach excels in 
performance compared to the existing modern methods.

Keywords: Image inpainting; Image restoration; Auto encoder; Repeated 
convolution

Introduction

Image inpainting is a highly utilized subject matter in the 
past few years [1]. Image inpainting process contributes 
a fantastic appearance to an image in this manner that an 
average person is not able to recognize that the image has 
undergone certain alterations [1]. It can restore missed 
portion of an image by using accessible data of exactly 
from that image itself. Image inpainting is commonly 
employed in image processing applications like elimination 
of superimposed text like dates, captions, as well as stamps 
in different images. The purpose of inpainting an image is 
to fill in vacant spaces in images with logical information 
and in addition, it manages further computer vision tasks 

like object detection, object identification, and semantic 
segmentation [2]. Despite the many benefits of this 
approach, retrieving suitable, rich, and distinctive textures 
for broad unstructured missing portions in high-quality 
photographs presents major challenges for image inpainting. 
Although in traditional methods there are numerous 
substitute techniques for image restoration, none of them 
use any effective digital image inpainting methods. First 
image inpainting technique was emerged in 2000 known as 
diffusion based technique or Partial Differential Equation 
based method (PDE) [1]. It also known as pixel oriented 
method. This method uses mathematical approaches such 
as Partial Differential Equations (PDEs) in order to spread 
the available data into the missing region. PDE works by 
diffusing image pixels from the target region’s edge to 
its interior by propagating information from the border. 
Contextual information is moved from borders into holes 
in the direction of the isophotes by this method [1,2].

Even though, this method is very effective in filling small 
regions, it tends to introduce some blurry effect while filling 
large textured regions. This occurs because PDE solutions 
frequently require the boundary and initial conditions to be 
provided [2]. The primary drawbacks of this model are that 
it performs inadequate when reconstructing large textured 
areas because the propagation process introduces blurring 
artefacts and there is insufficient explicit management of 
the edge pixels. The answers might not be evident since it 
might be challenging to get exact boundary conditions in 
real-world situations. Additionally, solving PDE equations 
requires additional computing time [3].

Another well-known image inpainting technique derived 
after PDE is Exemplar based method or Patch-based 
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method. In Patch-based approach, patches are filled 
in appropriate places by giving priority to each patch. 
Exemplar Based approach fails to reconstruct structured 
regions and is primarily focused on filling huge textured 
regions, while being faster and more efficient than PDE. 
The patch’s size has an effect on how inpainting turns 
out. There isn’t yet a simple method for figuring out the 
patch’s size automatically [4]. The best-fitting patches 
are continuously found using patch match algorithm to 
close the gaps. Although this approach typically yields 
smooth results, its ability to understand visual semantics 
is limited by the given image information. This algorithm 
concentrates on rectangular-shaped holes, which are 
frequently considered to be in the middle of image and the 
search is incredibly poor and prone to inaccurate results 
[5]. This is a main drawback of Exemplar based method 
and eventually decrease the usefulness of these models in 
the application [6]. A new inpainting algorithm called Fast 
Marching Method [7] the basis for obtaining FMM is the 
propagation of an image smoothness estimator down the 
image gradient. It is almost similar to PDE method [1]. 
By using a weighted average over an established region 
around the pixel, this approach estimates the smoothness 
of the image. They transmit image information using Fast 
Marching Method (FMM) outlined in, treating the damaged 
regions as level sets [7]. Anyway, due to the lack of specific 
methods for inpainting edge regions, these rapid strategies 
are not appropriate for filling large hole regions [8].

Another popularly used method for image inpainting is 
using image interpolation in image inpainting it ignores 
the size of the damaged area [9]. Since the techniques 
mentioned above concentrate on the damaged region’s 
size, interpolation technique treats small and large region 
in a similar manner. This method uses information from 
the surrounding pixels to complete damaged areas of an 
image. Some popular image interpolation methods are 
nearest neighbour interpolation, Bilinear interpolation, 
Bicubic interpolation and Kriging interpolation [10]. All 
these techniques have its own corresponding equations and 
the computational complexity of these equations makes it 
really challenging in image inpainting applications [11].

However, these conventional image inpainting techniques 
frequently fall short when the missing portion is significant 
or complicated since they are unable to extract deeper 
elements from the original image, such as higher level 
semantic, texture, and other features [12]. Researchers 
can utilize deep learning models to solve computer vision 
issues. We introduce a novel auto encoder-based method in 
this paper to deal with the previously noted problems with 
high-resolution image restoration.

Previously published papers consider valid and invalid 
elements of the masked image as differently [13,14]. This 
frequently results in distortions like color disparity and 
blurriness. In our work we consider both these type of 
elements in the same manner and this is the highlighted 
simplicity of our work. For irregular masks, our model 
beats existing techniques. Targeting for advanced image 

inpainting, we suggest for using repeated convolution 
method for fine-tuning of the result. To support future efforts 
at developing and testing inpainting models, we propose 
to create a significant dataset of irregular masks that will 
be released to the public. We validate our methodology 
through qualitative and quantitative comparisons using 
standard measurements available in the literature [15]. 
We perform in-depth analyses on 2 type of dataset named 
CIFAR-10 and CelebA datasets [16].

By harnessing image inpainting, professionals can create 
powerful, personalized tools for therapy, improve the 
accuracy of medical research, and raise public awareness, 
offering fresh possibilities in the fight against drug and 
alcohol addiction. Machine learning models for diagnostic 
purposes rely on high-quality medical images. Inpainting 
generates synthetic yet realistic data by completing 
incomplete scans, thus augmenting datasets used for AI 
model training. Inpainting can help reconstruct and predict 
how certain tissues or organs might change over time, which 
is especially useful in longitudinal studies for diseases like 
Alzheimer’s, cancer, or multiple sclerosis.

Image inpainting in drug and alcohol addiction 
treatment and research

Image inpainting, a technique used in artificial intelligence 
and computer vision, refers to filling in or reconstructing 
missing, corrupted, or intentionally removed parts of 
an image. In the context of drug and alcohol addiction 
treatment and research, this technology offers several 
unique and emerging applications.

Therapeutic visual stimuli modification

Trigger desensitization: Individuals recovering from 
addiction often experience cravings triggered by visual cues 
(e.g., alcohol bottles or drug paraphernalia). Inpainting can 
be used to modify photographs to remove or replace these 
cues, helping patients practice desensitization to real-world 
stimuli in a controlled environment.

Before-and-after simulations: Inpainting can generate 
visual transformations showing improvements after 
lifestyle changes, such as depicting the reversal of physical 
damage caused by substance abuse. This can motivate 
individuals during recovery.

Neurofeedback and Virtual Reality (VR) applications

VR-based therapy: In virtual reality environments, 
inpainting can dynamically alter visual scenes, removing 
elements that might trigger addiction responses or creating 
new positive scenarios for behavioral conditioning.

Customized therapy sessions: Neurofeedback devices 
that detect brain responses to visual cues can use inpainting 
to modify stimuli in real-time, helping therapists monitor 
and adjust treatment.

Privacy-preserving research

Anonymized image data: Researchers studying addiction 
behaviors (e.g., facial cues associated with substance 
abuse) can use inpainting to remove identifying features 
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from participant photos while retaining other critical data. 
This preserves privacy without losing the integrity of 
research datasets.

Public awareness campaigns

Interactive campaigns: Campaigns focused on addiction 
prevention can use inpainting to create striking visuals. 
For instance, an image might show the difference between 
a person’s face before and after addiction recovery, with 
inpainting providing realistic “healing” simulations to 
foster public empathy and awareness.

Addiction biomarkers identification

Augmenting medical imaging: Inpainting can be applied 
in medical imaging studies (e.g., brain MRIs) to reconstruct 
damaged areas or fill in corrupted scans. This is especially 
useful when studying brain regions affected by substance 
abuse. Additionally, AI-enhanced image completion helps 
researchers observe patterns that may correlate with 
addiction behaviors.

The remaining portions of this manuscript are divided into 
the following segments. Section II examines appropriate 
literature, Section III presents the suggested approach, 
Section IV discuss the outcomes of the experiment and 
Section V ends with conclusion.

The main aim behind image restoration is to logically 
complete spaces remained by damaged portions of 
images [1]. Image inpainting remains a subject of active 
research because of its tremendous advantages for image 
editing features like object removal and image restoration 
which are very useful [2-4]. The 2 categories of current 
methodologies are methods depending on learning and 
methods depending on non-learning.

For completing a particular gap in an image, artists in non-
learning image inpainting employs pixels from surrounding 
areas to complete the damaged component of the image. 
These techniques perform effectively for inpainting 
backgrounds in photographs; yet, there are some scenarios 
where they fail, such as when the surrounding areas lack 
the essential data to fill in the gaps [4].

While learning-based image inpainting methods concentrate 
on predicting the missing parts of a damaged image, we 
will consider a convolution neural network architecture to 
make predictions of damaged image that are both visually 
pleasing and functionally effective. We discuss these 
approaches in detail below.

Image inpainting based on non-learning

Many works on conventional techniques based on non-
learning were published in earlier years [1-4]. These 
approaches do not need training time as in the case of 
traditional approaches. Traditional non-learning alternatives 
typically involve old computer vision and image processing 
approaches. Some of the common approaches are PDE, 
Exemplar based, and interpolation based [1,3,4,7,9]. 
Initially, a patch needs to be located in an exemplar-based 
or patch-based method. After determining which patch best 

matches the missing region, the missing pixels are finally 
calculated using the best matching patch [4]. In these 
techniques missing pixels are identified by employing 
multiple neighbouring embedded techniques. The ideal 
patch size, offset, filling order, and matching algorithms 
for patch-based algorithms have all been well studied. For 
instance, the exemplar-based texture generation technique 
uses picture isophotes and confidence values to determine 
the target inpainting region’s filling order [4,5].

This method uses copies of neighboring pixel patches to fill 
up the blank spaces [4-6]. Fast Marching Method, a pixel-
based technique used by Telea, represented as the pixel data 
in adjacent unknown areas along with the brightness of an 
image [7]. It’s an easy and quick method of repairing small, 
homogeneous areas. But this also fails in filling large non 
homogeneous regions. Ghayoumi et al. (2014) suggested a 
fuzzy-based technique for image inpainting that eliminated 
the dropping effect associated with exemplar-based 
inpainting [17].

An algorithm that disperses the median value of pixels 
from the outside region into the painted area was proposed 
by Thanh et al. (2019) [18]. It is a reliable technique 
with encouraging outcomes for both homogeneous and 
heterogeneous backgrounds.

Wang et al. (2006) suggested a technique for image 
inpainting that depends upon Compactly Supported Radial 
Basis Function (CSRBF) [19]. This algorithm translated 
2D picture inpaint into an implicit surface reconstruction 
problem using a 3D point set. The RBF algorithm reduces 
the computational cost of the sparse and bounded linear 
algebraic equation system. Zhang N et al. (2019) presented 
an inpainting algorithm based on the exemplar technique 
[20]. Sun et al. (2005) offer an interactive curve-based 
strategy to complete essential structures before remaining 
undetermined parts [21]. A new randomized method called 
PatchMatch is presented by Barnes et al. (2009) for rapidly 
determining the estimated nearest neighbour or any matches 
found in the patch images [22]. These methods work well, 
especially when used for inpainting stationary backgrounds 
with repeating patterns. However, these methods might not 
be able to fill up large gaps in complex scenes.

Original image is separated into textured and non-textured 
sections by Hung et al. (2017) encompassing the damaged 
area components using a structural tensor [23]. Exemplar-
based restoration is used for textured regions, while Telea 
restoration is used for non-textured sections [7]. Specific 
Cubic Spline interpolation technique is used to fill curve 
sections [24]. This method’s disadvantage is that using 
so many algorithms increased the computing load. When 
resampling images, the nearest-neighbour, linear, and 
different cubic interpolation functions are commonly 
utilized. For the most part, quadratic functions have been 
ignored since it is believed that they create phase distortions 
[25].

In traditional image inpainting method, image inpainting 
techniques fill the missing portion primarily using statistical 
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data from the remaining image content. To maintain 
consistency with the surrounding pixels, each pixel of the 
missing portion is constructed using the similarity principle. 
However, when the data dimension increases, interpolation-
based techniques, which can solve the problem with great 
precision, may lose their effectiveness [26].

These classical methods like image interpolation, 
exemplar-based, and PDE-based techniques cannot recreate 
complicated or heavily corrupted areas [27].

Image inpainting based on non-learning

Non-learning-based inpainting approaches have drawbacks 
in comparison to deep learning-based techniques when 
it comes to handle complicated textures, semantically 
meaningful inpainting, and dealing with vast missing 
sections. They can be computationally efficient and may 
be preferred only in cases where training data is limited 
or when a deterministic approach is needed. Significant 
progress has been made for creation of supervised learning 
methods for image inpainting with deep learning. A 
specific kind of machine learning called deep learning is 
primarily concerned with teaching computers through 
experimentation. Deep image inpainting models can 
produce more convincing material for complex situations 
than non-learning-based alternatives [27].

Convolutional neural network will be trained to detect 
missing pixels in a damaged image by training the machine 
for achieving effective image inpainting. By utilizing 
data from distant image contexts, deep image inpainting 
models deduce the contents of a large missing region. An 
artificial convolutional neural network trained to produce 
contents of missed area based from environment [28]. 
Early implementations of the Context Encoder concept 
have demonstrated encouraging outcomes using images 
of people’s faces, streets, etc. These models are limited to 
processing low-resolution images since they employ fully-
connected layers. Since this concept is introduced, we will 
refer to it as partial convolution-based padding [29]. It 
lets us perceive the padded region as holes while keeping 
the original image as available area. Considering the 
ratios between the sliding window area’s convolution and 
padded areas, convolution technique properly reweights 
convolution results around image borders [30,31]. In this 
paper, the missing material is generated by conditioning 
on the available data which use a unique method for 
semantic image inpainting [32]. They use the context and 
past losses, along with a trained generative model to repair 
damaged image. The generative model is then applied to 
this encoding to infer the content that is missing. While 
the cutting-edge learning-based method requires precise 
knowledge about the gaps in the training phase, the method 
allows inference regardless of how the missing content 
is constructed. Context encoders that have been taught 
to produce context-based images advance the field of 
conceptual inpainting. Simultaneously, they acquire feature 

representations that can compete with those of other models 
trained with additional guidance [33]. The development of 
adversarial training and deep feature learning for picture 
inpainting has resulted in notable advancements. Deep 
image inpainting models are more capable of producing 
more credible contents for complex situations as compared 
to non-learning based systems [34]. MagConv presents a 
unique convolution method specifically suited for image 
inpainting [14]. This method contains learnable piecewise 
activation function and sharing of the convolution kernel 
between mask and image. Although this method gives 
plausible results, this method contains more complicated 
and numerous instructions to compute. In paper is made up of 
an adversarial model-based image completion network and 
an edge generator [35]. When a sizable portion of an image 
is absent or a lot of texture is present in image, especially 
in higher quality photographs, this edge generating model 
occasionally has trouble accurately representing edges 
[36]. Reference used PConv to represent the combined 
processes of texture-guided structure reconstruction and 
structure-constrained texture generation [13]. To further 
enhance PConv’s performance, alternate methods such as 
Gated Convolution (GConv) and Learnable Bidirectional 
Attention Maps (LBAM) were proposed. A stimulating 
attention map module for mask replacement is presented 
by LBAM with a feature re-normalization. A soft multi-
channel mask is learned by GConv in order to re-normalize 
features. Unlike PConv, which scales only the hole border, 
these 2 algorithms scale the features of the entire image. 
Additionally, region-wise solutions were put out to use 
various convolution kernels in the decoder network to learn 
distinct properties of valid regions and holes independently 
[37-40].

From the literature review, we reached in a conclusion that 
these non-learning based image inpainitng methods fail in 
understanding the content in the image. Many non-learning 
based inpainting techniques require manual tuning of 
parameters such as patch size or diffusion coefficients. This 
procedure could take a long time and produce poor results. 
Moreover, these traditional methods are mainly focused on 
size of the region and also these methods find difficulty in 
handling irregular inpainting regions.

When compared to conventional techniques, learning 
based algorithms acquire and recognize advanced semantic 
characteristics of images in order to create efficient image 
inpainting, which is required for scenes with plenty of gaps 
and complexity.

Methodology

As depicted in Figure 1, our suggested approach comprises 
two important operations; one as a convolution operation 
and the other one as a max-pool operation. In this 
portion, we explain about our suggested method in detail. 
Afterwards, network architecture along with loss function 
associated with the work are discussed.
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Figure 1: Architecture of the suggested method, ReConv

Image inpainting using repeated convolution process 
(ReConv)

In recent existing methods, they all treat valid elements 
(valid elements in an image refer to the parts of the image 
that contain meaningful information) and invalid elements 
(refer to the parts of the image that are missing portions) 
of the image separately [13,14]. This approach makes the 
system more complex in terms of space and time. In our 
proposed method, we do a repeated convolution operation 
by treating valid and invalid elements alike which reduces 
the complexity of the system. Convolution is a technique of 
altering an image by running a kernel matrix sliding upon 
each and every pixel of the input image.

Currently, there are no available dataset of masked images 
as online, but in the case of image inpainting a dataset of 
masked images is necessary for testing the proposed model, 
therefore, we created Masked images (M) of size ‘n’ for 
inpainting.

Mask creation for images involve marking the areas of 
an image that we want to correct or fill in. In this method, 
mask of an image is produced by taking copy from the 
original image and make background image as white. Then, 
select random (x, y) points in the image and draw lines by 
joining these (x, y) points in random thickness of different 
orientations with customized number of lines.

Resultant feature map matrix after convolution is subjected 
to the max pooling process. By producing a down sampled 
(pooled) feature map, the resultant max-pooled matrix 
determines the largest value of each patch in the feature 
map. Consequently, the max-pooling layer’s feature map 
would include the standout elements of the initial feature 
map obtained using equation (1).

Then size of resultant down sampled matrix (Mx × Mx) 
after max pooling operation has the size n2/l2 where ‘n’ size 
of ’F’ and ‘l’ size of ‘k’.

‘n’ represents the size of masked image and ‘l’ is the max 
pool’s filter size operation and ‘s’ is the stride and Mx is 
the size of the max pooled matrix [41]. For each element 
in the Max-pooled matrix (Mx) locate the matching place 
in feature map matrix and associated data element in the 
masked image to determine each element’s location in the 
masked image. After finding a data element in the masked 
image, search for a nearby zero in the masked image. Then 
replace this zero element with this data element. After one 

replacement check the updated masked image for invalid 
element (zero). If there is invalid element (zero) perform 
the above operations again and again until no invalid (zero) 
in the updated masked image, then the updated masked 
image is the new inpainted image.

Auto encoder network architecture and implementation

As displayed in Figure 2 we design a U-Net like architecture 
including a decoder and an encoder. The damaged image 
must be encoded and transformed into latent feature maps 
by the encoder, and the decoder must extract the image 
from these latent feature forms. We stacked 8 layers of 
convolutions in the encoder part and 8 layers of convolutions 
at the decoder part. The following convolution layer will 
get the masked picture as input from the skip link, which 
will concatenate the mask with the original image. The final 
convolution layer enables the model to replicate non-hole 
pixels from the regions of the image that are accessible. 
The section on detailed configuration is explained in Table 
1. We used Adam optimizer for optimization purpose. We 
train a batch size of 32 on a single *NVIDIA GIV (16GB) 
[42,43].
Table 1: Layered architecture of suggested model reconv

Layer Output No. of 
channels Parameter Activation 

Function

Input Image 128 × 128 3 0 Relu

Encoder 128 × 128 3 0 Relu

Conv1 128 × 128 3 1760 Relu

TFOpLambda 128 × 128 32 0 Relu

Conv2 64 × 64 32 18464 Relu

TFopLambda 64 × 64 32 0 Relu

Conv3 64 × 64 32 18464 Relu

TFopLambda 64 × 64 32 0 Relu

Conv4 32 × 32 32 18464 “

TFOpLambda 32 × 32 32 0 “

Conv5 32 × 32 32 18464 “

Conv6 16 × 16 32 18464 “

TFOpLambda 16 × 16 32 0 “

Conv7 16 × 16 32 18464 “

TFOpLambda 16 × 16 32 0 “

Max-
pooling2D 3 × 3 3 0 “

Conv2D 8 × 8 32 0 Relu

TFOpLambda 8 × 8 32 0 Relu

Upsampling 
2D 16 × 16 32 0 Relu

Upsampling 
2D 16 × 16 32 0 Relu

Concatenate 16 × 16 64 0 Relu

Concatenate 16 × 16 64 0 Relu

Conv2D 16 × 16 256 295168 Relu

TFOpLambda 16 × 16 256 0 Relu

Conv2D 16 × 16 128 589952 Relu

TFOpLambda 16 × 16 128 0 Relu
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Upsampling 
2D 32 × 32 128 0 Relu

Upsampling2D 32 × 32 128 0 Relu

Concatenate 64 × 64 96 0 Relu

Concatenate 64 × 64 96 0 Relu

Conv2D 64 × 64 32 36896 “

TFopLambda 64 × 64 64 0 “

Conv2D 64 × 64 32 0 “

TFopLambda 128 × 128 3 0 “

Conv2D 128 × 128 3 84 “

Total 
parameters 17,18,679 - - -

Total trainable 
parameters 17,18,679 - - -

Figure 2: Basic Network diagram of Auto Encoder

Loss function

Our loss functions aim to achieve 2 goals: Composition 
(i.e., how well expected missed pixel values meld with the 
surrounding area) and per-pixel reconstruction accuracy. 
The total of all absolute deviations between the value 
that is true and the value that is expected is the error. This 
disparity is minimized by applying L1 loss function. Mean 
of these Absolute Errors (MAE), often known as the Mean 
Absolute Error or L1 loss is employed to convey the loss 
function [44].

The goal is to reduce this loss between expected and 
desired outputs as much as possible throughout training. 
MAE results by dividing the total absolute errors by the 
sample size.

To replicate how people might see certain aspects of an 
image and to record high-level semantic features, the 
perceptual loss is described as [45].

where Icomp=M*k representing the convolutional process 
over the masked image and ’*’ is the convolution symbol. 
Ψi stands for the feature map of the ith pooling layer. Once 
the loss functions mentioned above are gathered, the whole 
loss function may be expressed as,

ReLU is the activation function that’s being employed 
here for reducing loss. ReLU, sometimes referred to as 
the rectified linear activation function that supports non 
linearity. In the case of a positive input, ReLU will output 
the input directly, in the absence of a positive input, it will 
result into zero. So it reduces complexity. It has taken as a 
standard activation function for numerous types of neural 
networks since models that utilize it typically perform 
better and train more quickly [46].

The details of image inpainting datasets and evaluation 
metrics are covered in this section. We also made a systematic 
comparison and the performance of our suggested image 
inpainting model in comparison to inpainting techniques 
in literature.

Experimental Results

Data sets

We created irregular masks for image inpainting by 
adding random lines to the training data. We selected 
irregular masks because irregular masks are challenging 
and more applicable to real-life circumstances mainly 
used by majority of the image inpainting techniques. We 
experimented on 2 datasets with varying thickness of the 
mask. Two popular datasets used are CelebA and CIFAR-10 
and these are employed for training separately, and the 
prepared model was then used for testing. It is evident that 
our approach can faithfully recreate the features, including 
its shape and texture.

CelebA: We employed CelebA (Large-scale CelebFaces 
Attributes) 128 × 128 dataset, a sizable collection of 30,000 
images. 80% of total images are taken for training and 20% 
of the total images are taken for testing [47].

CIFAR-10: CIFAR-10 dataset contains variety collection 
of images specially designed for machine learning and 
computer vision algorithms. We use CIFAR-10 image 
dataset made up of 60,000 images with size 32 x 32 photos 
with 50,000 images for training and 10,000 samples for 
testing purpose [48].

We first activate initial training with a learning rate of 
0.0002 before using batch normalization when holes 
are present. Next, after freezing the batch normalization 
parameters in the encoder portion of the network, we use a 
learning rate of 0.00005 to fine-tune them. By maintaining 
batch normalization enabled on the decoder part helps to 
expedite the convergence process and prevent issues with 
the wrong mean and variance.

Experimental setup

The proposed image inpainting model was trained on 
Google Colab pro platform with 54.8 GB RAM with 
Tesla v100 GPU machine with Keras libraries. The Adam 
optimizer, sometimes referred as “Adaptive Moment 
Estimation”, is an iterative optimization method used in 
neural network training that reduces the loss function [43]. 
It was utilized to train the model across 40 epochs.
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Evaluation metrics

The Structural Similarity Index Measure (SSIM) and 
FID (Frechet Inception Distance) metrics, as well as the 
Peak Signal to Noise Ratio (PSNR), are the frequently 
employed to assess the strength of images. Below is a list 
of all the objective measurements that were utilized in the 
quantitative comparisons along with explanation of their 
selection [49].

Peak Signal to Noise Ratio (PSNR): PSNR between 2 
images is an expression for ratio of signal power to noise 
power. Using this ratio, the quality of original image and 
inpainted images is compared. As PSNR rises, the restored 
image’s quality gets better.

in which ‘n’ is the quantity of r of data points, pi is the 
observed value, and yi is the forecasted value.

Structural Similarity Index Measure (SSIM): SSIM is 
utilized as one of the most representative quality measures 
in many fields of image processing. When the SSIM value 
is nearly equal to ‘1’ it indicates better structural similarity 
between inpainted and original image.

c1, c2-variables to stabilize the division with weak 
denominator

L is the dynamic range of pixel values (typically this is 2#bits 
per pixel−1, k1=0.01 k2=0.03 by default [49].

FID: A metric called Frechet Inception Distance score 
(FID) determines the separation between feature vectors 
computed for generated and real images.

Where mu1 and mu2 stand for the original and produced 
images’ feature-wise means. The trace linear algebra 
operation is denoted by Tr, and the co-variance matrix for 
original and produced feature vectors is represented by c1 

and c2 [50].

Quantitative comparisons

Tables 2 and 3 shows the PSNR, SSIM and FID values 
of increasing order of epochs for our proposed model. 
Tables 4 and 5 shows these values of different mask ratios. 
Quantitative analysis of image inpainting in deep learning 
evaluates the effectiveness of inpainting models by utilizing 
a variety of matrices. These tables depict by comparing 
with state-of-art methods EC, CTSDG and MGConv on 
CelebA dataset [14,51,52]. From these tables, it reveals 
that the suggested method shows notable advancement in 
PSNR, SSIM and FID values, which implies excellence of 
our method for inpainting irregular large holes. Moreover, 
we have given values for these matrices for different mask 
ratios. In every mask ratio, recommended method shows 
superior outcomes in comparison to the existing methods 
in literature.
Table 2: PSNR AND SSIM values of different values of epoch on 
CIFAR-10 DATASET

Epoch 20 25 30 35 40
PSNR 20.673 20.435 21.234 21.712 25.101
SSIM 0.926 0.927 0.938 0.937 0.947
FID 2.022 1.98 1.99 1.88 1.834

Table 3: PSNR AND SSIM values of different values of epoch on 
CELEBA DATASET

Epoch 20 25 30 35 40

PSNR 23.872 23.011 24.213 24.658 25.101

SSIM 0.956 0.967 0.978 0.978 0.988

FID 1.912 2.021 1.956 1.823 1.612

Table 4: PSNR, SSIM and FID values of the proposed method recent 
quantitative measures are not available for CIFAR-10 DATASET for 
comparison

- Mask ratio ReConv (our 
method)

SSIM↑
0%-20% 0.9513
20%-40% 0.9532
40%-60% 0.9223

PSNR↑
0%-20% 34.236
20%-40% 28.962
40%-60% 21.101

↓FID
0%-20% 2.452
20%-40% 6.125
40%-60% 11.831

- Mask ratio EC CTSDG MGConv ReConv (proposed 
method)

SSIM↑
0%-20% 0.9908 0.9908 0.9904 0.9913
20%-40% 0.953 0.9572 0.9576 0.9592
40%-60% 0.8633 0.8747 0.8828 0.8923

PSNR↑
0%-20% 36.752 38.17 37.67 38.236
20%-40% 28.851 29.48 29.299 29.962
40%-60% 23.67 24.205 24.268 25.101

↓FID
0%-20% 2.374 2.29 1.815 1.712
20%-40% 6.707 8.209 5.616 5.125
40%-60% 13.151 17.519 10.554 9.231

Table 5: PSNR,SSIM AND FID values with state of the art in quantitative comparison with celeba dataset, ↑ suggests that greater is preferable and 
↓suggests lower is preferable
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Qualitative comparisons

On 2 datasets, Figures 3-7 provide a visual comparison 
of our strategy with some samples taken from the result. 
The true image is shown in the first column, while masked 
image and mask are shown for each dataset in the following 
2 columns and finally the last column shows the final 
inpainted image by our proposed model. While most of 
the algorithms are able to effectively rebuild the bulk of 
the missing pixels in the gaps, some patterns are distorted 
and some images have intensity contrast mismatches. By 
looking into the visuals given, it can be derived that our 
method, repeated convolution with max-pooling (ReConv) 
works well and generates pleasing retrieval of structure and 
texture of images [53].

Learning curves

Figure 3 displays learning curves obtained at the time of 
training using CIFAR-10 dataset and CelebA dataset. It 
shows ‘Mean Absolute Error’ loss function which clearly 
lowers with an increase in training epochs. It also indicates 
that the network may learn more until it reaches the 
convergence state. At the beginning of training, the loss is 
considerable, but by the end, the loss decreases after 20th 
epoch and settles within the 40th epoch range.

Figure 3: Learning curves of the suggested model on (a) CIFAR-10 
dataset and (b) CelebA dataset

Figure 4: (i) and (ii) represents images having mask ratios 0%-20% 
and 20%-40%; (a) represents the image that appears originally and (b) 
represents image by applying mask on it, (c) is the visualization of how 
mask appears, (d) is the resultant image after applying the ReConv method 
on CIFAR-10 data set with increased thickness of mask

Figure 5: Mask ratio having 40%-60%; (a) represents the image that 

appears originally and (b) represents image by applying mask on it, 
(c) is the visualization of how mask appears, (d) is the resultant image 
after applying the ReConv method on CIFAR-10 data set with increased 
thickness of mask

Figure 6: (i) represents images having mask ratios 0%-20%, (ii) 
represents images having mask ratios 20%-40%; (a) represents the image 
that appears originally and (b) represents image by applying mask on it, 
(c) is the visualization of how mask appears, (d) is the resultant image 
after applying the ReConv method on CelebA data set with increased 
thickness of mask

Figure 7: Images having mask ratios (40%-60%); (a) represents the image 
that appears originally and (b) represents image by applying mask on it, 
(c) is the visualization of how mask appears, (d) is the resultant image 
after applying the ReConv method on CelebA data set with increased 
thickness of mask

Ablation study

Here, we provided a novel method for efficiently inpainting 
images using repeated convolution method with max-
pooling, named ReConv, which effectively inpaint images. 
Our model is capable of handling holes that are any size, 
shape, location, or distance from the edges of the image. 
We have experienced the model for different values of 
epochs. From the experiment, we identified that in 40th 
epoch, the model is converging. Peak signal-to-noise ratio: 
A decibel measurement, is computed by PSNR block in 
between 2 images. The increased value of this ratio is used 
to evaluate the effectiveness of our approach. As the PSNR 
rises, the rebuilt image’s quality gets better. In addition to 
this, we calculated SSIM and FID measures which shows 
the practicability of our method.

Discussion

Inpainting is useful in reconstructing 3D models from 
partial data, such as missing sections in MRI or CT scans, 
ensuring more complete anatomical models for diagnosis 
and surgical planning. Our method does not contain any 
complicated computations which only uses a standard 
convolution operation with max-pooling. We use irregular 
mask of random thickness, in any orientation and number 
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of lines also varying.

Conclusion

The scope of image inpainting in drug and alcohol addiction 
research is wide-ranging, encompassing clinical therapy, 
medical imaging, research ethics, and public awareness. By 
improving therapeutic interventions, ensuring privacy, and 
augmenting medical analysis, inpainting offers significant 
potential for both treatment providers and researchers, 
advancing the understanding and management of addiction. 
Inpainting can be used to alter or mask personal information 
(such as facial features) in medical imaging data while 
preserving critical medical content. This enables compliant 
data sharing for research purposes while ensuring patient 
privacy. In the current investigation, we suggested a new 
approach for effective image inpainting by using repeated 
convolution method. Our model can manage holes that 
are any size, shape, location, or distance from the edges 
of the image. Furthermore, we tested images of different 
type of random masks of varying thickness and length. The 
experimental outcomes on CelebA and CIFAR-10 dataset 
demonstrated the viability of our approach. We showed 
how repeated convolution with max-pooling can enhance 
the level of image inpainting quality. We compared our 
model’s efficacy to alternative image inpainting techniques. 
Our model produces outcomes with rich texture and 
consistent structure when compared to existing approaches.
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